核反应中的分波分析

入射粒子带来的轨道角动量有不同的组成( s,p,d,f,s,p,d,f,\cdots ),可以根据不同的轨道角动量来分析核反应截面。

半经典的分波分析

对于核反应

A+aB+b A + a \longrightarrow B + b

设入射粒子 aa 的速度为 vav_a ,入射方向与靶核 AA 的距离为 ρ\rho (又叫做碰撞参数),在质心系下考虑,相对运动动量

p=2μT=μva=mAma+mAmava p = \sqrt{2\mu T'} = \mu v_a = \frac{m_A}{m_a+m_A} m_a v_a

约化德布罗意波长

  ˉ ⁣λ=p \mkern5mu\bar{}\mkern-5mu\lambda = \frac{\hbar}{p}

相对运动的角动量

L=pρ=ρ  ˉ ⁣λ L = p \cdot \rho = \frac{\rho}{\mkern5mu\bar{}\mkern-5mu\lambda} \hbar

由于轨道角动量是量子化的,即 L=l(l=0,1,2,)L=l\hbar \kern 1em (l=0,1,2,\cdots) ,故

ρ  ˉ ⁣λ=0,1,2,3,ρ=l  ˉ ⁣λ=0  ˉ ⁣λ,1  ˉ ⁣λ,2  ˉ ⁣λ, \frac{\rho}{\mkern5mu\bar{}\mkern-5mu\lambda} = 0,1,2,3,\cdots \Longrightarrow \rho = l \mkern5mu\bar{}\mkern-5mu\lambda = 0\mkern5mu\bar{}\mkern-5mu\lambda, 1\mkern5mu\bar{}\mkern-5mu\lambda, 2\mkern5mu\bar{}\mkern-5mu\lambda, \cdots

碰撞参数是量子化的

这样,入射粒子 aa 与靶核 AA 的碰撞过程,就可以被分解为对应于不同轨道角动量的部分,相当于是一层一层的圆环形状。

碰撞过程分解为对应于不同角动量的部分

考虑到核力是短程力,为使碰撞能够发生,碰撞参数应有最大值的限制,即

ρ=l  ˉ ⁣λR=Ra+RA \rho = l\mkern5mu\bar{}\mkern-5mu\lambda \le R = R_a + R_A

则轨道角动量量子数 ll 应满足

lR  ˉ ⁣λ=lmax l \le \frac{R}{\mkern5mu\bar{}\mkern-5mu\lambda} = l_{\max}

轨道角动量为 ll\hbar 的入射粒子与靶核的作用截面为

Sl=π(ρl+12ρl2)=π[(l+1)2l2]  ˉ ⁣λ2=(2l+1)π  ˉ ⁣λ2 S_l = \pi (\rho_{l+1}^2 - \rho_l^2) = \pi [(l+1)^2 - l^2] \mkern5mu\bar{}\mkern-5mu\lambda^2 = (2l+1) \pi \mkern5mu\bar{}\mkern-5mu\lambda^2

则发生核反应的截面

σr,lSl=(2l+1)π  ˉ ⁣λ2 \sigma_{r,l} \le S_l = (2l+1) \pi \mkern5mu\bar{}\mkern-5mu\lambda^2

总截面

σ=l=0R/  ˉ ⁣λ(2l+1)π  ˉ ⁣λ2=π(R+  ˉ ⁣λ)2 \sigma = \sum_{l=0}^{R/\mkern5mu\bar{}\mkern-5mu\lambda} (2l+1) \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 = \pi (R + \mkern5mu\bar{}\mkern-5mu\lambda)^2

其中 RR 表征核的尺寸,   ˉ ⁣λ\mkern5mu\bar{}\mkern-5mu\lambda 表征波动性,说明核的尺寸和粒子的波动性都对截面有贡献。

量子力学的分波分析

xx 方向入射的粒子束可用平面波 eikx\mathrm{e}^{\mathrm{i}kx} 表示,在有心力场中,可以用球面波分解

ψi=eikx=eikrcosθ=l=0+(2l+1)iljl(kr)Pl(cosθ) \psi_i = \mathrm{e}^{\mathrm{i}kx} = \mathrm{e}^{\mathrm{i}kr\cos\theta} = \sum_{l=0}^{+\infty} (2l+1)\mathrm{i}^l \cdot j_l(kr) \cdot \mathrm{P}_l(\cos\theta)

其中 jl(kr)j_l(kr) 是球贝塞尔函数,当 kr1kr \gg 1 时,即波函数远离原子核时,有

jl(kr)sin(krlπ/2)kr=iei(krlπ/2)ei(krlπ/2)2kr j_l(kr) \approx \frac{\sin(kr-l\pi/2)}{kr} = \mathrm{i} \frac{\mathrm{e}^{-\mathrm{i}(kr-l\pi/2)} - \mathrm{e}^{\mathrm{i}(kr-l\pi/2)}}{2kr}

ψi=12krl=0+(2l+1)il+1[ei(krlπ2)ei(krlπ2)]Pl(cosθ) \psi_i = \frac{1}{2kr} \sum_{l=0}^{+\infty} (2l+1)\mathrm{i}^{l+1} \left[ \mathrm{e}^{-\mathrm{i}(kr-\frac{l\pi}{2})} - \mathrm{e}^{\mathrm{i}(kr-\frac{l\pi}{2})} \right] \mathrm{P}_l(\cos\theta)

其中 ei(krlπ/2)\mathrm{e}^{-\mathrm{i}(kr-l\pi/2)}rr 前系数为负,指向内部,为入射球面波ei(krlπ/2)\mathrm{e}^{\mathrm{i}(kr-l\pi/2)}rr 前系数为正,指向外部,为出射球面波

若原点上有靶核,对入射波没有影响,而散射会导致出射波函数的变化,即 ei(krlπ/2)\mathrm{e}^{\mathrm{i}(kr-l\pi/2)} 前乘上系数 ηl\eta_l ,则波函数变为

ψ=12krl=0+(2l+1)il+1[ei(krlπ2)ηlei(krlπ2)]Pl(cosθ) \psi = \frac{1}{2kr} \sum_{l=0}^{+\infty} (2l+1)\mathrm{i}^{l+1} \left[ \mathrm{e}^{-\mathrm{i}(kr-\frac{l\pi}{2})} - \eta_l \cdot \mathrm{e}^{\mathrm{i}(kr-\frac{l\pi}{2})} \right] \mathrm{P}_l(\cos\theta)

这里的出射波系数 ηl\eta_l 是一个与 ll 有关的复数,由于入射轨道角动量 ll 不同,出射波的振幅和相位也不同。 ηl\eta_l 与散射、反应有关:

  • 散射时 ηl=1|\eta_l| = 1
  • 反应时 ηl<1|\eta_l| < 1

考虑靶核导致的散射对应的波函数,其应该为有靶核时的波函数与无靶核时的波函数之差,即

ψsc=ψψi =12krl=0+(2l+1)il+1[ei(krlπ2)ηlei(krlπ2)]Pl(cosθ) =12krl=0+(2l+1) il+1 (1ηl) ei(krlπ2) Pl(cosθ) =12krl=0+(2l+1) il+1 (1ηl) eikr il Pl(cosθ) =12krl=0+i(2l+1) (1ηl) eikr Pl(cosθ) =l=0+ψsc,l \psi_{sc} = \psi - \psi_i \ \ \ = \frac{1}{2kr} \sum_{l=0}^{+\infty} (2l+1)\mathrm{i}^{l+1} \left[ \mathrm{e}^{\mathrm{i}(kr-\frac{l\pi}{2})} - \eta_l \cdot \mathrm{e}^{\mathrm{i}(kr-\frac{l\pi}{2})} \right] \mathrm{P}l(\cos\theta) \ \ \ = \frac{1}{2kr} \sum{l=0}^{+\infty} (2l+1)\ \mathrm{i}^{l+1}\ (1-\eta_l)\ \mathrm{e}^{\mathrm{i}(kr-\frac{l\pi}{2})}\ \mathrm{P}l(\cos\theta) \ \ \ = \frac{1}{2kr} \sum{l=0}^{+\infty} (2l+1)\ \mathrm{i}^{l+1}\ (1-\eta_l)\ \mathrm{e}^{\mathrm{i}kr}\ \mathrm{i}^{-l}\ \mathrm{P}l(\cos\theta) \ \ \ = \frac{1}{2kr} \sum{l=0}^{+\infty} \mathrm{i} (2l+1)\ (1-\eta_l)\ \mathrm{e}^{\mathrm{i}kr}\ \mathrm{P}l(\cos\theta) \ \ \ = \sum{l=0}^{+\infty} \psi_{sc,l}

接下来计算入射波函数与散射波函数对应的概率流密度 j=i2m(ψrψψrψ)j = -\frac{\mathrm{i}\hbar}{2m}(\psi^\frac{\partial}{\partial r}\psi - \psi\frac{\partial}{\partial r}\psi^) ,即

ji=i2m(ψirψiψirψi) =i2m(eikxxeikxeikxxeikx) =i2m(ik+ik) =km j_i = -\frac{\mathrm{i}\hbar}{2m}(\psi_i^* \frac{\partial}{\partial r} \psi_i - \psi_i \frac{\partial}{\partial r} \psi_i^*) \ \ \ = -\frac{\mathrm{i}\hbar}{2m}( \mathrm{e}^{-\mathrm{i}kx} \frac{\partial}{\partial x} \mathrm{e}^{\mathrm{i}kx} - \mathrm{e}^{\mathrm{i}kx} \frac{\partial}{\partial x} \mathrm{e}^{-\mathrm{i}kx}) \ \ \ = -\frac{\mathrm{i}\hbar}{2m}(\mathrm{i}k + \mathrm{i}k) \ \ \ = \frac{\hbar k}{m}

jsc=i2m(ψscrψscψscrψsc) =i2m(ψscrψsc复共轭项) =i2m{ψscr[12krl=0+i(2l+1) (1ηl) eikr Pl(cosθ)]复共轭项} =i2m[ψsc(1r+ik)ψsc复共轭项] =i2m[(1r+ik)ψsc2复共轭项] =i2m(2ikψsc2) =kmψsc2 =km12krl=0+i(2l+1) (1ηl) eikr Pl(cosθ)2 =km14k2r2l=0+(2l+1)(1ηl)Pl(cosθ)2 j_{sc} = -\frac{\mathrm{i}\hbar}{2m} \left(\psi_{sc}^* \frac{\partial}{\partial r} \psi_{sc} - \psi_{sc} \frac{\partial}{\partial r} \psi_{sc}^* \right) \ \ \ = -\frac{\mathrm{i}\hbar}{2m} \left( \psi_{sc}^* \frac{\partial}{\partial r} \psi_{sc} - 复共轭项 \right) \ \ \ = -\frac{\mathrm{i}\hbar}{2m} \left{ \psi_{sc}^* \frac{\partial}{\partial r} \left[ \frac{1}{2kr} \sum_{l=0}^{+\infty} \mathrm{i} (2l+1)\ (1-\eta_l)\ \mathrm{e}^{\mathrm{i}kr}\ \mathrm{P}l(\cos\theta) \right] - 复共轭项 \right} \ \ \ = -\frac{\mathrm{i}\hbar}{2m} \left[ \psi{sc}^* \left( -\frac{1}{r} + \mathrm{i}k \right) \psi_{sc} - 复共轭项 \right] \ \ \ = -\frac{\mathrm{i}\hbar}{2m} \left[ \left( -\frac{1}{r} + \mathrm{i}k \right) |\psi_{sc}|^2 - 复共轭项 \right] \ \ \ = -\frac{\mathrm{i}\hbar}{2m} \left( 2\mathrm{i}k |\psi_{sc}|^2 \right) \ \ \ = \frac{\hbar k}{m} |\psi_{sc}|^2 \ \ \ = \frac{\hbar k}{m} \left| \frac{1}{2kr} \sum_{l=0}^{+\infty} \mathrm{i} (2l+1)\ (1-\eta_l)\ \mathrm{e}^{\mathrm{i}kr}\ \mathrm{P}l(\cos\theta) \right|^2 \ \ \ = \frac{\hbar k}{m} \frac{1}{4k^2r^2} \left| \sum{l=0}^{+\infty} (2l+1)(1-\eta_l) \mathrm{P}_l(\cos\theta) \right|^2

故散射微分截面

dσscdΩ=jscr2dΩjidΩ=14k2l=0+(2l+1)(1ηl)Pl(cosθ)2 =  ˉ ⁣λ24l=0+(2l+1)(1ηl)Pl(cosθ)2 \frac{\mathrm{d}\sigma_{sc}}{\mathrm{d}\Omega} = \frac{j_{sc} \cdot r^2 \mathrm{d}\Omega}{j_i \mathrm{d}\Omega} = \frac{1}{4k^2} \left| \sum_{l=0}^{+\infty} (2l+1)(1-\eta_l) \mathrm{P}l(\cos\theta) \right|^2 \ \ \ = \frac{\mkern5mu\bar{}\mkern-5mu\lambda^2}{4} \left| \sum{l=0}^{+\infty} (2l+1)(1-\eta_l) \mathrm{P}_l(\cos\theta) \right|^2

根据勒让德函数的正交归一化公式

0πPl(cosθ)Pl(cosθ)sinθdθ=22l+1δll \int_{0}^{\pi} \mathrm{P}l(\cos\theta) \mathrm{P}{l'}(\cos\theta) \sin\theta \mathrm{d}\theta = \frac{2}{2l+1} \delta_{ll'}

可得散射的总截面为

σsc=dσscdΩdΩ =  ˉ ⁣λ2402πdφ0πl=0+(2l+1)(1ηl)Pl(cosθ)2sinθdθ =π  ˉ ⁣λ22l,l=0+(2l+1) 1ηl (2l+1) 1ηl0πPl(cosθ)Pl(cosθ)sinθdθ =π  ˉ ⁣λ22l=0+(2l+1)2 1ηl222l+1 =π  ˉ ⁣λ2l=0+(2l+1) 1ηl2 \sigma_{sc} = \int \frac{\mathrm{d}\sigma_{sc}}{\mathrm{d}\Omega} \mathrm{d}\Omega \ \ \ = \frac{\mkern5mu\bar{}\mkern-5mu\lambda^2}{4} \int_{0}^{2\pi} \mathrm{d}\varphi \int_{0}^{\pi} \left| \sum_{l=0}^{+\infty} (2l+1)(1-\eta_l) \mathrm{P}l(\cos\theta) \right|^2 \sin\theta \mathrm{d}\theta \ \ \ = \frac{\pi \mkern5mu\bar{}\mkern-5mu\lambda^2}{2} \sum{l,l'=0}^{+\infty} (2l+1)\ |1-\eta_l|\ (2l'+1)\ |1-\eta_{l'}| \int_{0}^{\pi} \mathrm{P}l(\cos\theta) \mathrm{P}{l'}(\cos\theta) \sin\theta \mathrm{d}\theta \ \ \ = \frac{\pi \mkern5mu\bar{}\mkern-5mu\lambda^2}{2} \sum_{l=0}^{+\infty} (2l+1)^2\ |1-\eta_l|^2 \frac{2}{2l+1} \ \ \ = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \sum_{l=0}^{+\infty} (2l+1)\ |1-\eta_l|^2

由于散射时入射粒子与出射粒子均为 aa ,故需要考虑波函数的相干叠加,而发生核反应时出射粒子为 bb ,可认为 aa 消失了,关心的只是通量被吸收的比例,故用 ηl|\eta_l| 替代 ηl\eta_l 即可得到核反应截面的表达式

σr=π  ˉ ⁣λ2l=0+(2l+1) (1ηl)2 \sigma_r = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \sum_{l=0}^{+\infty} (2l+1)\ (1-|\eta_l|)^2

低能入射粒子的散射截面

ψ(r)=u(r)r \psi(r) = \frac{u(r)}{r}

则积分

0?0π02πψψr2drsinθdθdφ =0π02πsinθdθdφ0?uur2r2dr =4π0?uudr \int_{0}^{?} \int_{0}^{\pi} \int_{0}^{2\pi} \psi^* \psi r^2 \mathrm{d}r \sin\theta \mathrm{d}\theta \mathrm{d}\varphi \ \ \ = \int_{0}^{\pi} \int_{0}^{2\pi} \sin\theta \mathrm{d}\theta \mathrm{d}\varphi \int_{0}^{?} \frac{u^*u}{r^2} r^2 \mathrm{d}r \ \ \ = 4\pi \int_{0}^{?} u^*u \mathrm{d}r

对于低能入射粒子, pp 较小,   ˉ ⁣λ\mkern5mu\bar{}\mkern-5mu\lambda 较大, lmaxl_{\max} 较小,可认为只能取 l=0l=0 ,此时核外波函数简化为

ψo(r)=i2kr(eikrη0eikr) \psi_o(r) = \frac{\mathrm{i}}{2kr} \left( \mathrm{e}^{-\mathrm{i}kr} - \eta_0 \cdot \mathrm{e}^{\mathrm{i}kr} \right)

uo(r)=i2k(eikrη0eikr) u_o(r) = \frac{\mathrm{i}}{2k} \left( \mathrm{e}^{-\mathrm{i}kr} - \eta_0 \cdot \mathrm{e}^{\mathrm{i}kr} \right)

在核内(即 r<Rr<R ),由于具有核力的作用,入射粒子的能量会比核外高出一些, pp 更大一些,   ˉ ⁣λ\mkern5mu\bar{}\mkern-5mu\lambda 更小一些,故核内波函数 ui(r)u_i(r) 震荡频率会比核外更高一些,入射粒子能量越低,震荡频率相对高的就更多。

虽然核内外波函数不同,但函数 u(r)u(r) 在核内与核外边界处 r=Rr=R 应一阶连续可导,故可定义无量纲的对数导数

f=r(lnu)r=R=ruiduidrr=R=ruoduodrr=R f = \left. r\left(\ln u\right)' \right|{r=R} = \frac{r}{u_i} \left. \frac{\mathrm{d}u_i}{\mathrm{d}r} \right|{r=R} = \frac{r}{u_o} \left. \frac{\mathrm{d}u_o}{\mathrm{d}r} \right|_{r=R}

由核外波函数表达式可得

f=ruoduodrr=R=rikeikrikη0eikreikrη0eikrr=R =RikeikRikη0eikReikRη0eikR=fR+ifI f = \frac{r}{u_o} \left. \frac{\mathrm{d}u_o}{\mathrm{d}r} \right|{r=R} = \left. r \frac{ -\mathrm{i}k \mathrm{e}^{-\mathrm{i}kr} - \mathrm{i}k\eta_0 \cdot \mathrm{e}^{\mathrm{i}kr} }{ \mathrm{e}^{-\mathrm{i}kr} - \eta_0 \cdot \mathrm{e}^{\mathrm{i}kr} } \right|{r=R} \ \ \ = R \frac{ -\mathrm{i}k \mathrm{e}^{-\mathrm{i}kR} - \mathrm{i}k\eta_0 \cdot \mathrm{e}^{\mathrm{i}kR} }{ \mathrm{e}^{-\mathrm{i}kR} - \eta_0 \cdot \mathrm{e}^{\mathrm{i}kR} } = f_R + \mathrm{i} f_I

由此可用 ff 表示 η0\eta_0 ,即

f(eikRη0eikR)=ikReikRikRη0eikRfeikR+ikReikR=η0(feikRikReikR)η0=f+ikRfikRe2ikR f \cdot (\mathrm{e}^{-\mathrm{i}kR} - \eta_0 \cdot \mathrm{e}^{\mathrm{i}kR}) = -\mathrm{i}kR \mathrm{e}^{-\mathrm{i}kR} - \mathrm{i}kR\eta_0 \cdot \mathrm{e}^{\mathrm{i}kR} \ \Downarrow \ f \mathrm{e}^{-\mathrm{i}kR} + \mathrm{i}kR \mathrm{e}^{-\mathrm{i}kR} = \eta_0 \cdot ( f\mathrm{e}^{\mathrm{i}kR} - \mathrm{i}kR \mathrm{e}^{\mathrm{i}kR} ) \ \Downarrow \ \eta_0 = \frac{f+\mathrm{i}kR}{f-\mathrm{i}kR} \mathrm{e}^{-2\mathrm{i}kR}

若入射粒子与核的作用已知,则核内波函数 uiu_i 可知,继而可知核边界处的对数导数 ff ,然后即可求出 η0\eta_0 ,从而得到散射截面

σsc,0=π  ˉ ⁣λ21η02 \sigma_{sc,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 |1-\eta_0|^2

考虑两种极端的情况:

第一种为 uo(R)0u_o(R) \to 0 的情况,此时 duodr(R)0\frac{\mathrm{d}u_o}{\mathrm{d}r}(R) \ne 0 ,故 f=Ruo(R)duodr(R)f = \frac{R}{u_o(R)} \frac{\mathrm{d}u_o}{\mathrm{d}r}(R) \to \infty ,如图所示

f趋于无穷

这种情况下,由于核内波函数震荡频率远高于核外,为了保证波函数一阶连续可导,在核内的波函数振幅会很小,相当于入射粒子被核排斥而弹出,几乎不可能进入核内。此时

η0=limff+ikRfikRe2ikR=e2ikR \eta_0 = \lim_{f\to\infty} \frac{f+\mathrm{i}kR}{f-\mathrm{i}kR} \mathrm{e}^{-2\mathrm{i}kR} = \mathrm{e}^{-2\mathrm{i}kR}

对应于势(形状)弹性散射截面

σsc,0=π  ˉ ⁣λ21η02=π  ˉ ⁣λ21e2ikR2 \sigma_{sc,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 1 - \eta_0 \right|^2 = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 1 - \mathrm{e}^{-2\mathrm{i}kR} \right|^2

对于低能中子, kR1kR \ll 1 ,使用泰勒展开做以估计,取到一阶近似,结合   ˉ ⁣λk=1\mkern5mu\bar{}\mkern-5mu\lambda k = 1 ,可得

σsc,0=π  ˉ ⁣λ22ikR2=4π  ˉ ⁣λ2k2R2=4πR2 \sigma_{sc,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 2\mathrm{i}kR \right|^2 = 4\pi \mkern5mu\bar{}\mkern-5mu\lambda^2 k^2 R^2 = 4\pi R^2

第二种为 uo(R)u_o(R) 取到最大值的情况,此时 duodr(R)=0\frac{\mathrm{d}u_o}{\mathrm{d}r}(R) = 0 ,故 f=Ruo(R)duodr(R)0f = \frac{R}{u_o(R)} \frac{\mathrm{d}u_o}{\mathrm{d}r}(R) \to 0 ,如图所示

f趋于0

这种情况下,为了保证波函数一阶连续可导,在核内的波函数振幅会与核外保持一致,相当于入射粒子进入靶核并发生共振。此时

η0=limf0f+ikRfikRe2ikR=e2ikR \eta_0 = \lim_{f\to0} \frac{f+\mathrm{i}kR}{f-\mathrm{i}kR} \mathrm{e}^{-2\mathrm{i}kR} = -\mathrm{e}^{-2\mathrm{i}kR}

对应于共振(复合核)散射截面

σsc,0=π  ˉ ⁣λ21η02=π  ˉ ⁣λ21+e2ikR2 \sigma_{sc,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 1 - \eta_0 \right|^2 = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 1 + \mathrm{e}^{-2\mathrm{i}kR} \right|^2

对于低能中子, kR1kR \ll 1 ,使用泰勒展开做以估计,取到零阶近似,可得

σsc,0=π  ˉ ⁣λ222=4π  ˉ ⁣λ2 \sigma_{sc,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 2 \right|^2 = 4\pi \mkern5mu\bar{}\mkern-5mu\lambda^2

考虑一般的情况,应处于上述两种极端情况之间

σsc,0=π  ˉ ⁣λ21η02=π  ˉ ⁣λ21f+ikRfikRe2ikR2 =π  ˉ ⁣λ2e2ikRf+ikRfikR2 =π  ˉ ⁣λ2(e2ikR1)2ikRfikR2 =π  ˉ ⁣λ2(e2ikR1)2ikRfR+i(fIkR)2 =π  ˉ ⁣λ2Apot+Ares2 \sigma_{sc,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 1 - \eta_0 \right|^2 = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 1 - \frac{f+\mathrm{i}kR}{f-\mathrm{i}kR} \mathrm{e}^{-2\mathrm{i}kR} \right|^2 \ \ \ = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| \mathrm{e}^{2\mathrm{i}kR} - \frac{f+\mathrm{i}kR}{f-\mathrm{i}kR} \right|^2 \ \ \ = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| (\mathrm{e}^{2\mathrm{i}kR} - 1) - \frac{2\mathrm{i}kR}{f-\mathrm{i}kR} \right|^2 \ \ \ = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| (\mathrm{e}^{2\mathrm{i}kR} - 1) - \frac{2\mathrm{i}kR}{ f_R + \mathrm{i}(f_I - kR) } \right|^2 \ \ \ = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| A_{pot} + A_{res} \right|^2

其中 ApotA_{pot} 对应势弹性散射,

Apot=e2ikR1=eikR(eikReikR)=2ieikRsin(kR) A_{pot} = \mathrm{e}^{2\mathrm{i}kR} - 1 = \mathrm{e}^{\mathrm{i}kR} ( \mathrm{e}^{\mathrm{i}kR} - \mathrm{e}^{-\mathrm{i}kR} ) = 2\mathrm{i}\mathrm{e}^{\mathrm{i}kR} \sin(kR)

对于低能入射粒子, kR1kR \ll 1 ,故势弹性散射截面

σpot,0=π  ˉ ⁣λ22ieikRsin(kR)24π  ˉ ⁣λ2(kR)2=4πR2 \sigma_{pot,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| 2\mathrm{i}\mathrm{e}^{\mathrm{i}kR} \sin(kR) \right|^2 \approx 4\pi \mkern5mu\bar{}\mkern-5mu\lambda^2 (kR)^2 = 4\pi R^2

可知当入射粒子能量不大时,势(形状)弹性散射的截面是个常数,与核的大小有关。

AresA_{res} 对应共振散射,

Ares=2ikRfR+i(fIkR) A_{res} = \frac{-2\mathrm{i}kR}{ f_R + \mathrm{i}(f_I - kR) }

故势弹性散射截面

σres,0=π  ˉ ⁣λ22ikRfR+i(fIkR)2 =π  ˉ ⁣λ24k2R2fR2+(fIkR)2 4π  ˉ ⁣λ2k2R2(dfRdT)T=E02(TE0)2+(fIkR)2 \sigma_{res,0} = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \left| \frac{-2\mathrm{i}kR}{ f_R + \mathrm{i}(f_I - kR) } \right|^2 \ \ \ = \pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \frac{4k^2R^2}{ f_R^2 + (f_I - kR)^2 } \ \ \ \approx 4\pi \mkern5mu\bar{}\mkern-5mu\lambda^2 \frac{k^2R^2}{ \left( \cfrac{\mathrm{d}f_R}{\mathrm{d}T'} \right)_{T' = E_0}^2 (T' - E_0)^2 + (f_I - kR)^2 }